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ABSTRACT 

In this  paper  we es tabl ish  a relat ionship be tween genera t ing  n u m b e r s  

and  covering n u m b e r s  of conjugacy classes in Chevalley groups  over alge- 

braically closed fields. 

1. I n t r o d u c t i o n  

Let G be a simple algebraic group over a field K and let C1 , . . . ,  Ck be non- 

central conjugacy classes of G. For the case when the characteristic of K is 

zero it was proved in [G] that if C 1 . " C k  = G (so that the product of the 

classes C~ is dense in G) then for every non-central g C G there exist elements 

gl E C 1 , . . . , g k  C Ck such that (g ,g l , . . . ,gk> = G. In general, the condition 
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C1. ' .  Ck = G does not guarantee the existence of sequences of representatives 

from these conjugacy classes which generate a dense subgroup, as we see from 

the simple example G = SL2 with C1 = C~ the conjugacy class of elements of 

order 4. However, in [G] it was shown that  the condition on products implies 

the existence of a dense subset in C1 �9 ." Ck such that  every sequence from this 

subset will generate a dense subgroup in some closed reductive subgroup D of G 

such that  Z(D) = Z(G) (again assuming that  the characteristic of K is zero). 

The inverse problem is also considered in [G] in the case of characteristic zero: if 

( g l , . . . ,  9k) = G for some gl E C 1 , . . . ,  gk E Ck, does it follow that  C 1 . "  Ck = G? 

This is true not only for sequences which generate a dense subgroup in G but 

also for those which generate a dense subgroup in some closed reductive subgroup 

D < G with Z(D)  = Z(G).  In the case when C1 = C2 . . . .  ,Ck = C one can 

define 

~ ( C ,  G) = rain{mr C "~ = a} ,  

and 

]g-~(C) = min(mlthere exists a sequencegl , . . . ,  gm E C with(g1, . . . ,  g,~) = G}. 

The above results imply 

(.) ~ ( C )  < g~'~(C) < ~ ( C )  + 1 

in the characteristic zero case. Here we prove such results for every characteristic 

(for the second inequality to hold, one needs to assume that  the field is not 

Fp). We also obtain some additional information about connections of these two 

properties of "covering" and "generation". We may omit the bar over cn and 

define 

cn(C, G) = min{mlC  m = a} .  

Since the product of eonjugacy classes is a constructible set, we have cn(G) <_ 

2 ~ ( C )  and therefore 

(**)  cn(C) < < cn(C) + 1. 

Let now G be a Chevalley group over K,  with K any infinite field not contained 

in Fpp (so G is the subgroup of G(K)  generated by unipotent elements, where G is 

a simple algebraic group defined and split over K) .  Considering G as a subgroup 

of G(K) we can define the notion ~ ( C )  as above. In section 5 we prove the 

inequality 

(***)  ~cn(C) < - ~ ( C )  <_ cn(C) + 1. 
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Note that the condition that K is not contained in the closure of the field of p 

elements is clearly necessary. 

A related result for the finite Chevalley groups G has also been obtained 

recently: there exists a general positive constant c (independent of G and C) 

such that 

c.cn(C) < gen(C) ~_ cn(C) + 1 

for every non-trivial conjugacy class C of any finite simple group G of Lie type. 

The right hand inequality here follows from a result of Guralnick and Kantor 

[GK]. The left hand inequality follows from a recent paper of Liebeck and Shalev 

[LS] (note, however, that  c is not given explicitly there). 

2. Notat ion and terminology 

2.1. Here R is an irreducible root system generated by a simple root system 

{al  . . . .  , a~}. We also write R = {al . . . .  , ~ } .  Further, R + and R -  are the sets 

of positive and negative roots respectively, W = W(R) is the Weyl group for R. 

Our notation for root systems is that of Bourbaki [B, Tables I-X]. 

2.2. Let G be a simple algebraic group corresponding to a root system R which 

is defined and split over a field K.  Let a E R. We use the notation of Steinberg 

[St1] for unipotent and semisimple root elements x~(t),t E K,h~(t) , t  E K*. 
Further, X~ = (x~(t)lt E K*} is the corresponding root subgroup of G(K). The 

subgroup of G(K) generated by all root subgroups is the Chevalley group over 

the field K corresponding to G, and is also denoted by G (where this does not 

lead to any confusion). 

2.3. There is another type of Chevalley groups (or twisted Chevalley groups). 

Namely, in the case where K is a finite field and G is simply connected we 

consider groups of the form G(K) F where F is a Frobenius map (see [C1], [C2]). 

We also denote such a group by G. The automorphism F can be written in 

the form F = Op, where 0 is the corresponding field automorphism and p is the 

corresponding graph automorphism. The field K e of 0-invariants we denote by 

k, except in the case of Suzuki Ree groups 2B2(q2),2 G2(q2), 2 F4(q2). For these 

groups we put k = K. The Chevalley groups (untwisted or finite twisted) are 

quasisimple except for a few cases ([St1], [C1]). For a twisted group there exists 

also the root system which is obtained from R by glueing roots. We will denote 

this system by R F (when we speak only of the corresponding twisted group we 

will omit the superscript F). The notation for root systems in the twisted cases 

corresponds to [C1]. The notation for root subgroups (which can be one, two, or 
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three parameter  subgroups) is the same as in the untwisted case. The rank(G) 

is the number  of simple roots  in R (or in RE). 

2.4. Let G be a Chevalley group (untwisted or twisted) over a field K corre- 

sponding to a root  system R. Then 

H - -  (h~(t ) ia  �9 R , t  �9 g * ( o r ,  t �9 k*, i f p ( a )  = c~)), 

U =  (X~la �9 R+), U -  = (X~]~ e R - ) ,  B =  HU, B -  = H U - .  

The subgroup N (see [Stl], [C1,2]) contains the group H as a normal  subgroup 

and N / H  ~ W.  By w we denote any preimage of an element w �9 W in N.  

2.5. Let u �9 U. Then u can be wri t ten as a product  of elements of the form 

x~ �9 X~, c~ > 0. This expression depends on the order in which we take this 

product ,  but  if we fix the order of roots the expression becomes unique. 

2.6. The general group notat ion and terminology we use is s tandard.  When  we 

consider algebraic groups the bar  over a set means the Zariski closure. The bar 

over a field means the algebraic closure. 

3. F r o m  c o v e r i n g  t o  g e n e r a t i o n  

THEOREM 1: Let G be a simple algebraic group defined over an algebraically 

closed field K and let C t , . . . , C k  be conjugacy classes of  G(K)  such that 

C I ' " C k  = G. 

I l K  r Fp for any prime p, then for every non-central element g E G(K)  there 

exists a sequence gl C C 1 , . . . ,  gk C Ck such that 

(g, g l , . . . ,  gk) = G(K) .  

Moreover, the set of  such sequences ( g l , . . - , g k )  is dense in C1 x C2 x . . .  x Ck. 

In all cases there exists a non-empty open subset X C C1 x C 2 x ' ' '  X C k 

such that for every sequence x = ( g l , . . . , g k )  C X the group Dx = ( g l , . . . , g k )  

is reductive and has a finite centraliser Cc(Dx) .  If, in addition, K ~ Fp, then 

for points x of  some dense subset of  X the corresponding group D~ contains a 

maximal  torus of G. 

Proof: If  K ~ Fp then there exists an element t E T ( K )  such tha t  (t) = 

T ( K )  ([Bo], ch. 18). Moreover, the set of such t is dense in T ( K ) .  Hence there 

exists a dense subset Y C C1 x . . .  x Ck satisfying the following condition: if 

(gl,.  . ., gk) E Y then (gig2"'" gk) = T ' ( K )  for some maximal  torus T' .  Note tha t  
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there exists only a finite number of maximal proper closed subgroups of G(K)  

containing a fixed torus T' (K) .  Thus there exists an open subset M C G(K)  

such that  for every a E M the element aga - i  does not belong to any closed 

subgroup of G containing the torus T' .  Hence the group ( a g a - i , g i , . . . , g k )  

equals G(K)  for every a E M, since it is not contained in any proper closed 

subgroup of G(K).  Thus, for a non-central element g we find an appropriate 

sequence ( a - i g l a , . . . ,  a - lgka l .  The density of the set of such sequences follows 

from the fact that  Y is dense and M is open. 

Now we prove the second assertion. Let F < G be a closed subgroup which 

has a non-trivial algebraic character r P + K* such that  r = K*. Then 

the set of semisimple parts in the Jordan decomposition (up to conjugation) of 

all elements of the set (Ci NF)(C2 N F ) . - .  (Ck NF) is contained in a proper closed 

subset of T (see [G], II, Lemma 8). Note that  the number of orbits (with respect to 

conjugation) of maximal closed subgroups of G which have a non-trivial character 

is finite. Hence there exists an open set M C T such that  if t E M, then for any 

such subgroup F we have t ~ ( c l n r ) ( c 2 n r )  . .  �9 ( c k n r ) .  The set of all conjugates 

of elements of M contains a subset X '  which is open in G. There exists an open 

subset X E Ci x . . .  • Ck such that  gig2"" "gk E X '  for every (g i ,g2 , . . .  ,gk) E X .  

Now the group Dx = (g i , . . . , gk )  for x = ( g l , . . . , g k )  E X cannot be contained 

in any parabolic subgroup (since the parabolics have a non-trivial character) and 

cannot have any torus in its centraliser. Thus Dx is reductive and has a finite 

centraliser. If, in addition, K • Fp, then we can choose as above those sequences 

in X whose products generate a dense subgroup in a maximal torus. | 

4. F r o m  g e n e r a t i o n  to  c o v e r i n g  

We use the notion of augmentative modules. 

Definition 1: Let P be a group, A be a commutat ive ring. Let A[F] be the 

corresponding group ring and IA[F] be its augmentation ideal. We say that  the 

A[r]-module M is augmentative if IA[F]M = M.  

In [GS] it is shown that  if M is an augmentative A[F]-module and P = 

(71"" "%),  then the map 

~b: M @ M @ . . . q~ M ) M 

given by the formula 

�9 ( ( m l , . . . ,  ink)) = (1 -- 7 i ) (mi )  +71(1 -- 72) (m2) + . - "  +71V2""" 7k- i  (1 -- 7k) (ink) 
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is surjective. 

Definition 2: Let G be an algebraic group defined over a field K and let L be 

the Lie algebra of G. We say that  a subgroup D < G(K)  is augmentative if L is 

an augmentative D-module with respect to the adjoint action of G on L. 

THEOREM 2: Let D -- ( f l , . . . ,  f k )  <-- G(K)  be an augmentative subgroup and 

let C1 , . . . ,  Ck be the conjugacy classes in G(-K) of elements f b . . . ,  f k. Then 

C1C2 . "  Ck = G(K) .  

Proof  We may assume that  the point f = f l f 2" ' "  fk is not singular in 

C 1C 2" .  Ck (otherwise we replace the elements f l , . . - ,  fk by suitable conjugates). 

Consider the map 

r  . . .  x G - - - + G  

given by the formula 

r  = ( X l I l X l l ) ( x 2 1 2 X 2 1 )  "'" ( X k f k X k l ) f - 1 .  

Using the formulas for differentials we see that the differential 

d~: L @ L @ - - - |  > L 

at the point (1 , . . . ,  1) is the map 

dr  lk)) = (1 -- f l ) ( l l )  + f l (1 -- f2)(12) + " "  + f ,  f2" '"  .fk-l(1 -- fk)(lk) 

(here we identify the operators ad(f~) with fi). Since L is an augmentative 

D-module we have Imdr  = L. But Imr  = C 1 C 2 " " C k f  -1 and the point 1 

is non-singular in CIC2. .  "Ckf  -1. Thus d i m I m r  = d i m G  = d i m C i C 2 . .  "Ck. 
| 

To apply Theorem 2 we need a supply of augmentative subgroups. Some 

examples are given by the following Theorem. 

THEOREM 3: Let G be a simple simply connected algebraic group defined over a 

field K.  In each of the following cases the subgroup D <_ G(K)  is augmentative: 

A. charK = 0 and D is a reductive subgroup of G with the same centre. 

B. G is split over K and D --- G(K) ,  except possibly the cases when D is not 

a quasi-simple group. 

C. G is a group over K = Fp and D = GF(K) ,  except possibly the cases when 

D is not a quasi-simple group (here F is a Frobenias map). 
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Proof: Case A is easier than the others, so we give the proof only in the cases 

B and C. If IKI > 2, then the Lie algebra sle(K) is an augmentative SL2(K)- 
module. Further, the Lie algebra 1- of G is the sum of algebras of the form ka = 

Ku_a + Kha + Kua where u+a,  ha are corresponding elements of the Chevalley 

basis ([Stl]), and each of these is isomorphic to sl2(K) (recall that  G is simply 

connected). If  we are in the untwisted case then the group (X+a) is isomorphic 

to SL2(K). Thus if IK[ > 2, then ka is an augmentative (X+a}-module and 

therefore the whole algebra k is an augmentative module with respect to the 

group generated by root subgroups. Assume now that  IKI = 2; then the algebra 

sl3(K) is an augmentative SL3(K)-module (this follows from a direct calculation 

with transvections). I t  follows that  in the untwisted case, if all the roots in 

R have the same length and rank _> 2, the algebra k is also an augmentative 

D-module. (Indeed, if I[D]L contains a subalgebra of L corresponding to the 

root subsystem of rank 2, then it contains the whole algebra k because we can 

spread root elements of a Chevalley basis by the Weyl group.) Next consider 

the untwisted cases Br, Cr when r _> 3. If  c~,/3 are the simple roots of different 

length which generate the root subsystem B2, then (xa(1) - 1)u,  = s~u.~ + s~ue 
where "~ = c~ +/3, 5 = a + 2/3, s~, s~ r 0. Since r > 3, either 7 or 5 is an element 

of a root subsystem of type A2. Hence, as we have seen above, u~ E I[D]k or 

u~ E I[D]L. It  follows that  both u~,u~ ~ I[D]L. Further, for every root e we 

have (x~(1) - 1)u_~ = +h~ + u~. Hence h~ e I[D]k. Thus every element of the 

Chevalley basis is in I[D]k and therefore k is an augmentative D-module. The 

case F4 is handled similarly, using the root subsystem B3. We do not consider 

the cases A1(2), B2(2), G2(2) since these groups are not quasi-simple. 

Now consider the twisted eases. 

Let D be of type 2A2,2 B2, 2 G2 acting on the corresponding Lie algebra of type 

A2, B2, G2. The first of these is handled by a direct computat ion with SU3(q 2) 
on sl3(K). In the second and third cases we assume q2 r 2, q2 r 3 respectively. 

Then in both cases we have an element in the group H which is regular in G(K). 
It  follows that  ua C I[D]L for every root a C R. Let a,/3 be the simple roots of 

R and let x = xa(1)x~(1)x I be an element of D, where x' is a product of positive 

root elements from G(K) corresponding to roots of the form ic~ + j/3, i , j  > 0 

(see [Stl]). Then (x - 1)u_a = taha + u, where ta r 0 and u belongs to the 

subspace of k generated by u~,3' > 0. Thus we have ha C I[D]k. Similarly we 

get hz included. Thus l_ is contained in I[D]k. 

Now consider the general twisted case. Note that  the Chevalley basis in k splits 

into F-orbi ts  and every such orbit generates a subalgebra of type A1, A1 x A1, 
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A1 • A1 • A1,A2, B2, G2 with a subgroup of D of type A1,A1, A1, 2A 2D 2f~ ~'~2, L~2, ~ 2  

acting on this subalgebra. For the last three of these we have seen that  this 

action is augmentative. The first case was also considered above and we have 

seen that  if IKI = q > 2 this action is augmentative. Next, SL2(q 2) acts by con- 

jugation on s l2(g)  • s l2(g)  in the following way: g((ll,/2)) = (g(ll),g~ 

(recall that  0 is the corresponding field automorphism). It  is easy to check 

that  this action is augmentative. The same holds for the action of SL2(q 3) 

on sl2(K) • sl2(K) • sl2(K). It  remains to consider the cases where there is an 

orbit consisting of one root and where q = 2. These are the cases when D is 

of type 2A21+1(4), 2Dr(4), 3D4(8), 2E6(4) (note that  in the case 2F4 we assume 

q2 r 2). In all of these, except for 3D4(8), we have a subalgebra L3 in L of type 

A3 which is F-stable and a subgroup of D of type 2A3(4) which acts on it. Let 

~1, ~2, a3 be a simple root system for A3 such that  {c~1, (~3}, {~2} are F-orbits.  

Since q2 > 2 we have u + ~ l , u •  3 E I[D]L because we have here the 

action of SL2(q 2) on the Lie algebra of the type A~ • A~. Let x -- x~l (1)x~3(1). 

Then (x - 1 )u~  = s lu~ ,+~ + s2u~2+~ 3 + s3u~+~2+~3 for some sl,  s2, s3 r 0. 

Moreover, the first and second roots in this sum are in the same F-orbi t  and 

correspond in R E to the root which is in the same WE-orbit  as the root corre- 

sponding to c~1, c~3. Therefore they are in I[D]L. Hence the last member  of this 

sum which corresponds to an F-stable root is also in I[D]L. Thus we can get 

all elements of the form us  from L3 in I[D][-. The same consideration as for B2 

above gives us also inclusions ha E I[D]L. Thus [-3 C I[D]L. Since every ele- 

ment of a Chevalley basis can be embedded in such an L3 we have our statement.  

Similar argument deals with the c a s e  3D4(8 ). I 

COROLLARY 1: Let G be a simple simply connected algebraic group de/~ned and 

split over a field K (or quasisplit over K = Fq). Let g l , . - . , g k  C G(K)  and let 

C 1 , . . . ,  Ck be the conjugacy c/asses of g l , . . .  , gk in G(K) .  I f  G(K)  is quasisimple 

and (gl , . . . ,gk> = G(K)  or <gl,...,gk> = G(K)  then 

C1C2.. .  Ck = G(K) .  

Proof'. Since the adjoint action of G on its Lie algebra L is regular the 

(g l , . . .  ,gk)-module I is augmentative if and only if the (g l , . . .  ,gk>-module [- is 

augmentative. Now, the result follows from Theorems 2 and 3. I 

5. Proofs of  the inequalities 

Let G be a simple algebraic group which is defined and split over a field K 

and let G < G(K)  be the corresponding Chevalley subgroup (i.e., the subgroup 
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generated by the unipotent elements). There exists a simple simply connected 

algebraic group G which is defined and split over K and an isogeny 

such that  r  = G ([Stl]). Let g E G and let ~ E G(K) be a fixed preimage 

of g with respect to r Further, let C C G, C C G(K),  C C G(K) be conjugacy 

classes of g in G, G(K) and the conjugacy class of ~ in G(K) respectively. 

Now let K be an algebraically closed field. Then G = G(K),  C = C. Since r 

is an isogeny we have ~-~(C) = ~-~(C). Moreover, gen(C) = g--~(C). Thus, to 

prove (*) we may assume that G is simply connected. Now Theorems 1, 2 and 3 

imply inequalities (,) and therefore (**). 

Now let K be an infinite field which is not a subfield of Fp. Let Q be the 

conjugacy class of g E C in G(K). The group G(K) is dense ill G(K) ([Bo], 

18.3). This implies the density of G in G(K) and therefore of C k in Qk for 

every k. The condition C k = G imples Q--k = G(K). From part two of Theorem 

1 it follows that  there exists a sequence g l , . - . , gk  E C such that the group 

(g l , . . . ,  gk) contains a maximal torus of G (recall that  the set X in Theorem 1 

is open in Q •  •  and the class C i s  dense in Q). Hence if we add 

an appropriate element from C to this sequence we get a dense subgroup of 

(see the proof of Theorem 1) and therefore we have the right-hand inequality in 

(***). Let (g l , . . .  ,gk) = G(K) for some g l , . . - , gk  E C. Further, let gl E G(K) 

be a fixed preimage of gl with respect to r and let (~ be the conjugacy class of 

t~l in G(K). Let g2, . . . , ffk E (~ be a sequence of fixed preimages of g2, . - . ,gk 

with respect to r Obviously, (if1,.. . ,  g~k> = G(K). Thus, the set Ok is dense in 
G(K) by Corollary 1 and therefore Qk is dense in G(K). Let /}zb0/} is the big 

Bruhat cell of G, where/} is a Borel subgroup of G and zb0 is a fixed preimage 

of the longest element from the Weyl group. We may assume zb0 E G. Since 
the big Bruhat cell is an open subset of G and C k is dense in Qk, we can find 

an element g E (/}tb0/}) fq C k. The uniqueness of the Bruhat decomposition 
shows that g E B~boB where B is a Borel subgroup of G. The eighth power of 

every conjugacy class which has a non-trivial intersection with the big Bruhat cell 

covers the whole Chevalley group if the ground field is infinite - -  this is proved 

in greater generality in ([GS, Proposition 4]). Hence C sk = G and we get the 

left-hand inequality of (* * , ) .  
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