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ABSTRACT

In this paper we establish a relationship between generating numbers
and covering numbers of conjugacy classes in Chevalley groups over alge-
braically closed fields.

1. Introduction

Let G be a simple algebraic group over a field K and let Cy,...,Ck be non-
central conjugacy classes of G. For the case when the characteristic of K is
zero it was proved in [G] that if C;---Cy = G (so that the product of the
classes C; is dense in G) then for every non-central g € G there exist elements
g1 € C1,...,9r € Cy such that (g,g1,...,9x) = G. In general, the condition
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C1---Cr = G does not guarantee the existence of sequences of representatives
from these conjugacy classes which generate a dense subgroup, as we see from
the simple example G = SL; with C; = C, the conjugacy class of elements of
order 4. However, in [G] it was shown that the condition on products implies
the existence of a dense subset in Cj -- - Cy such that every sequence from this
subset, will generate a dense subgroup in some closed reductive subgroup D of G
such that Z(D) = Z(G) (again assuming that the characteristic of K is zero).
The inverse problem is also considered in [G] in the case of characteristic zero: if
{91, -, 9x) = G for some g; € C1, ..., gx € Cy, does it follow that C; - --C = G?
This is true not only for sequences which generate a dense subgroup in G but
also for those which generate a dense subgroup in some closed reductive subgroup
D < G with Z(D) = Z(G). In the case when Cy = C2 = ...,Cy = C one can
define
an(C,G) = min{m| C™ = G},

and

gen(C) = min{m|there exists a sequencegy, ..., gm € C with(gy, ..., gm) = G}.
The above results imply

*) a(C) < gen(C) < (C) + 1

in the characteristic zero case. Here we prove such results for every characteristic
(for the second inequality to hold, one needs to assume that the field is not
F,). We also obtain some additional information about connections of these two
properties of “covering” and “generation”. We may omit the bar over cn and
define

en(C, G) = min{m|C™ = G}.

Since the product of conjugacy classes is a constructible set, we have cn(G) <
2cn(C) and therefore

(1) 5en(C) < gen(C) < en(C) +1.

Let now G be a Chevalley group over K, with K any infinite field not contained
in F, (so G is the subgroup of G(K) generated by unipotent elements, where @ is
a simple algebraic group defined and split over K). Considering G as a subgroup
of G(K) we can define the notion gen(C) as above. In section 5 we prove the
inequality

( % %) %cn(C) < gen(C) <en(C) + 1.
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Note that the condition that K is not contained in the closure of the field of p
elements is clearly necessary.

A related result for the finite Chevalley groups G has also been obtained
recently: there exists a general positive constant ¢ (independent of G and C)
such that

c.en(C) < gen(C) < en(C)+1

for every non-trivial conjugacy class C of any finite simple group G of Lie type.
The right hand inequality here follows from a result of Guralnick and Kantor
[GK]. The left hand inequality follows from a recent paper of Liebeck and Shalev
[LS] (note, however, that ¢ is not given explicitly there).

2. Notation and terminology

2.1. Here R is an irreducible root system generated by a simple root system
{a1,...,,}. We also write R = (a1,...,q,). Further, R* and R~ are the sets
of positive and negative roots respectively, W = W(R) is the Weyl group for R.
Our notation for root systems is that of Bourbaki [B, Tables I-X].

2.2. Let G be a simple algebraic group corresponding to a root system R which
is defined and split over a field K. Let o € R. We use the notation of Steinberg
[St1] for unipotent and semisimple root elements z4(t),t € K, hu(t),t € K*.
Further, X, = (x4(t)|t € K*) is the corresponding root subgroup of G(K). The
subgroup of G(K) generated by all root subgroups is the Chevalley group over
the field K corresponding to G, and is also denoted by G (where this does not
lead to any confusion).

2.3. There is another type of Chevalley groups (or twisted Chevalley groups).
Namely, in the case where K is a finite field and G is simply connected we
consider groups of the form G(K)¥ where F is a Frobenius map (see [C1], [C2]).
We also denote such a group by G. The automorphism F can be written in
the form F = 6p, where 6 is the corresponding field automorphism and p is the
corresponding graph automorphism. The field K¢ of #-invariants we denote by
k, except in the case of Suzuki-Ree groups 2By (q?),2 G2(g?).2 F4(¢?). For these
groups we put k¥ = K. The Chevalley groups (untwisted or finite twisted) are
quasisimple except for a few cases ([St1], [C1]). For a twisted group there exists
also the root system which is obtained from R by glueing roots. We will denote
this system by R¥ (when we speak only of the corresponding twisted group we
will omit the superscript ). The notation for root systems in the twisted cases
corresponds to [C1]. The notation for root subgroups (which can be one, two, or



252 N. GORDEEV AND J. SAXL Isr. J. Math.

three parameter subgroups) is the same as in the untwisted case. The rank(G)
is the number of simple roots in R (or in RF).

2.4. Let G be a Chevalley group (untwisted or twisted) over a field K corre-
sponding to a root system R. Then

H = (ho(t)|a € R,t € K*(or,t € k*, if p(a) = &)},
U= (Xala€ RY), U =(XsJa€R), B=HUB =HU".

The subgroup N (see [St1], [C1,2]) contains the group H as a normal subgroup
and N/H =2 W. By w we denote any preimage of an element w € W in N.

2.5. Let u € U. Then u can be written as a product of elements of the form
To € Xo, > 0. This expression depends on the order in which we take this
product, but if we fix the order of roots the expression becomes unique.

2.6. The general group notation and terminology we use is standard. When we
consider algebraic groups the bar over a set means the Zariski closure. The bar
over a field means the algebraic closure.

3. From covering to generation

THEOREM 1: Let G be a simple algebraic group defined over an algebraically
closed field K and let Cy,...,Cy be conjugacy classes of G(K) such that
Ci---Cx =G.

IfK # F; for any prime p, then for every non-central element g € G(K) there
exists a sequence g; € Cy,..., g, € Cy such that

(9,91, ., 9%) = G(K).

Moreover, the set of such sequences (g1, ..., 9%) is dense in Cy x Ca x - -+ x C.

In all cases there exists a non-empty open subset X C Cy1 x Cy X «+» x Cy,
such that for every sequence x = (g1,...,9%) € X the group D, = {g1,...,9k)
is reductive and has a finite centraliser Cg(D,). If, in addition, K # F,, then
for points z of some dense subset of X the corresponding group D, contains a
maximal torus of G.

Proof 1If K # F, then there exists an element ¢ € T(K) such that {t) =
T(K) ([Bo], ch. 18). Moreover, the set of such ¢ is dense in T(K). Hence there
exists a dense subset Y C C; x --- x Cy satisfying the following condition: if
(91,---,9x) € Y then {9192 - - gx) = T'(K) for some maximal torus T’. Note that
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there exists only a finite number of maximal proper closed subgroups of G(K)
containing a fixed torus T'(K). Thus there exists an open subset M C G(K)
such that for every ¢ € M the element ocgo~! does not belong to any closed

subgroup of G containing the torus T”. Hence the group (ogo~1,g1,...,9x)
equals G(K) for every 6 € M, since it is not contained in any proper closed
subgroup of G(K). Thus, for a non-central element g we find an appropriate
sequence (0~ 1g10,...,07gxo). The density of the set of such sequences follows
from the fact that Y is dense and M is open.

Now we prove the second assertion. Let I' < G be a closed subgroup which
has a non-trivial algebraic character ¢: I' — K* such that ¢(I') = K*. Then
the set of semisimple parts in the Jordan decomposition (up to conjugation) of
all elements of the set (C;y NT)(CaNT)--- (CpNT) is contained in a proper closed
subset of T' (see [G], I, Lemma 8). Note that the number of orbits (with respect to
conjugation) of maximal closed subgroups of G which have a non-trivial character
is finite. Hence there exists an open set M C T such that if ¢ € M, then for any
such subgroup I" we have t ¢ (C;NI')(CoNI') - - - (CxNT). The set of all conjugates
of elements of M contains a subset X’ which is open in G. There exists an open
subset X € Cy %+ x Cy, such that g1g2--- g, € X' for every (g1,92,.-.,9%) € X.
Now the group D = (g1,...,gx) for z = (g1,...,9%) € X cannot be contained
in any parabolic subgroup (since the parabolics have a non-trivial character) and
cannot have any torus in its centraliser. Thus D, is reductive and has a finite
centraliser. If, in addition, K # F’;, then we can choose as above those sequences
in X whose products generate a dense subgroup in a maximal torus. |

4. From generation to covering
We use the notion of augmentative modules.

Definition 1: Let I' be a group, A be a commutative ring. Let A[l'] be the
corresponding group ring and I4[I'] be its augmentation ideal. We say that the
A[l']-module M is augmentative if I4[I'|M = M.

In [GS] it is shown that if M is an augmentative A[l}-module and T =
(Y1 &), then the map

dMeMe--- oM —M

given by the formula

®((my,...,mi)) = (1=y1)(m1) +7 (1 =72)(ma)+- - +y17v2 - Yo-1 {1 —7) (M)
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is surjective.

Definition 2: Let G be an algebraic group defined over a field K and let L be
the Lie algebra of G. We say that a subgroup D < G(K) is augmentative if L is
an augmentative D-module with respect to the adjoint action of G on L.

THEOREM 2: Let D = (f1,..., fx) < G(K) be an augmentative subgroup and
let C1,...,Cy be the conjugacy classes in G(K) of elements fy, ..., fx. Then

CiCs - Cr = G(K).

Proof: We may assume that the point f = fify--- fr is not singular in
C1Cy - - Cy (otherwise we replace the elements f1,. .., fx by suitable conjugates).
Consider the map

p:GxGEx--xG—CG

given by the formula

¢((z1,...,zx)) = (w1 frzy ) (@2foxy ') -+ (wrfozy )
Using the formulas for differentials we see that the differential
dp:LOL G-l —L
at the point (1,...,1) is the map

do((l, .- k) = (L= fi)(ln) + (1 = f2)(l2) + -+ frfo - fe—1(1 = fe) (k)

(here we identify the operators ad(f,) with f;). Since L is an augmentative
D-module we have Imd¢ = L. But Im¢ = C1Cs---Cxf~! and the point 1
is non-singular in C;Cs---Cxrf~!. Thus dimIm¢ = dimG = dimC;C; - - Ck.
|

To apply Theorem 2 we need a supply of augmentative subgroups. Some
examples are given by the following Theorem.

THEOREM 3: Let G be a simple simply connected algebraic group defined over a
field K. In each of the following cases the subgroup D < G(K) is augmentative:

A. charK = 0 and D is a reductive subgroup of G with the same centre.

B. G is split over K and D = G(K), except possibly the cases when D is not
a quasi-simple group.

C. G is a group over K = F, and D = G (K), except possibly the cases when
D is not a quasi-simple group (here F is a Frobenius map).
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Proof: Case A is easier than the others, so we give the proof only in the cases
B and C. If |[K| > 2, then the Lie algebra slo(K) is an augmentative SLy(K)-
module. Further, the Lie algebra L of G is the sum of algebras of the form L, =
Ku_y+ Khy + Ku, where u4q, hy, are corresponding elements of the Chevalley
basis ([St1]), and each of these is isomorphic to slo(K) (recall that G is simply
connected). If we are in the untwisted case then the group {Xi,) is isomorphic
to SL2(K). Thus if |[K| > 2, then L, is an augmentative (X4,)-module and
therefore the whole algebra L is an augmentative module with respect to the
group generated by root subgroups. Assume now that |K| = 2; then the algebra
sl3(K) is an augmentative S L3 (K )-module (this follows from a direct calculation
with transvections). It follows that in the untwisted case, if all the roots in
R have the same length and rank > 2, the algebra L is also an augmentative
D-module. (Indeed, if I[D]L contains a subalgebra of L corresponding to the
root subsystem of rank 2, then it contains the whole algebra L because we can
spread root elements of a Chevalley basis by the Weyl group.) Next consider
the untwisted cases B,,C, when r > 3. If a, 8 are the simple roots of different
length which generate the root subsystem Bg, then (z4(1) — 1)ug = syuy + Ssus
where vy =a + 3,0 = a+ 28, s,.55 # 0. Since r > 3, either y or J is an element
of a root subsystem of type A;. Hence, as we have seen above, u, € I[D]L or
us € I[D]L. It follows that both u,,us € I[D]L. Further, for every root e we
have (z.(1) — 1)u_¢ = +h, + u.. Hence h. € I[D]L. Thus every element of the
Chevalley basis is in I[D]L and therefore L is an augmentative D-module. The
case Fy is handled similarly, using the root subsystem Bs. We do not consider
the cases A1(2), B2(2), G2(2) since these groups are not quasi-simple.

Now consider the twisted cases.

Let D be of type 24,2 By,%2 G5 acting on the corresponding Lie algebra of type
As, By, Go. The first of these is handled by a direct computation with SU3(q?)
on sl3(K). In the second and third cases we assume ¢ # 2, g2 # 3 respectively.
Then in both cases we have an element in the group H which is regular in G(K).
It follows that u, € I[D]L for every root o € R. Let ¢,  be the simple roots of
R and let = 24(1)zg(1)z’ be an element of D, where z’ is a product of positive
root elements from G(K) corresponding to roots of the form ia + j3,i,7 > 0
(see [St1]). Then (z — 1)u_q = toha + u, where £, # 0 and u belongs to the
subspace of L generated by u,,v > 0. Thus we have h, € I[D]L. Similarly we
get hg included. Thus L is contained in I[D]L.

Now consider the general twisted case. Note that the Chevalley basis in L splits
into F-orbits and every such orbit generates a subalgebra of type A;, A; x Ay,
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Ay X A1 X Aq, Aa, Be, G2 with a subgroup of D of type A1, Ay, A1,2Az,%2B3, %G,
acting on this subalgebra. For the last three of these we have seen that this
action is augmentative. The first case was also considered above and we have
seen that if |K| = ¢ > 2 this action is augmentative. Next, SL2(g?) acts by con-
jugation on sly(K) x slo(K) in the following way: g((l1,12)) = (g(l1), ¢%(l2))
(recall that 6 is the corresponding field automorphism). It is easy to check
that this action is augmentative. The same holds for the action of SL2(g®)
on sla(K) X sla(K) x sla(K). It remains to consider the cases where there is an
orbit consisting of one root and where ¢ = 2. These are the cases when D is
of type 2Ag11(4),2D,(4),3D4(8),2E¢(4) (note that in the case 2F; we assume
@ # 2). In all of these, except for 3D,(8), we have a subalgebra L3 in L of type
Ajs which is F-stable and a subgroup of D of type 243(4) which acts on it. Let
ai, @, a3 be a simple root system for Aj such that {a1,as}, {az} are F-orbits.
Since ¢ > 2 we have Uiq,,Utas, Rays Ras € I[D]L because we have here the
action of SL2(q?) on the Lie algebra of the type A; X A;. Let & = Zq, (1)Za,(1).
Then (£ — 1)uq, = S1%a;+ap + 52Uas+as T+ S3Ua; +as+as fOT SOME 81, 52,83 # 0.
Moreover, the first and second roots in this sum are in the same F-orbit and
correspond in RF to the root which is in the same WF-orbit as the root corre-
sponding to oy, 3. Therefore they are in I[D]L. Hence the last member of this
sum which corresponds to an F-stable root is also in I[D]L. Thus we can get
all elements of the form u, from L in I[D]L. The same consideration as for B
above gives us also inclusions h, € I[D]L. Thus L3 C I[D]L. Since every ele-
ment of a Chevalley basis can be embedded in such an L3 we have our statement.
Similar argument deals with the case 3Dy(8). |

COROLLARY 1: Let G be a simple simply connected algebraic group defined and
split over a field K (or quasisplit over K = F,). Let gy,...,g9x € G(K) and let
Ci,...,Cx be the conjugacy classes of g1, ..., gx in G(K). If G(K) is quasisimple

and {g1,...,9x) = G(K) or {(g1,...,9k) = G(K) then
CiCy-Cy = G(F).

Proof: Since the adjoint action of G on its Lie algebra L is regular the
(g1, ..., 9x)-module L is augmentative if and only if the (g1,...,gk)-module L is
augmentative. Now, the result follows from Theorems 2 and 3. |

5. Proofs of the inequalities

Let G be a simple algebraic group which is defined and split over a field K
and let G < é(K ) be the corresponding Chevalley subgroup (i.e., the subgroup
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generated by the unipotent elements). There exists a simple simply connected
algebraic group G which is defined and split over K and an isogeny

¢G——>é

such that ¢(G(K)) = G ([St1]). Let g € G and let § € G(K) be a fixed preimage
of g with respect to ¢. Further, let C C G,C C G(K), Cc G(K) be conjugacy
classes of g in G, G(K) and the conjugacy class of § in G(K) respectively.

Now let K be an algebraically closed field. Then G = G(K),C = C. Since ¢
is an isogeny we have @i(C) = en(C). Moreover, gen(C) = gen(C). Thus, to
prove (x) we may assume that G is simply connected. Now Theorems 1, 2 and 3
imply inequalities (x) and therefore (xx).

Now let K be an infinite field which is not a subfield of Fj,. Let Q be the
conjugacy class of g € C in G(K). The group G(K) is dense in G(K) ([Bo),
18.3). This implies the density of G in G(K) and therefore of C* in Q¥ for
every k. The condition C* = G imples QI =G (K). From part two of Theorem
1 it follows that there exists a sequence gi,...,g9x € C such that the group
{g1,.--,9x) contains a maximal torus of G (recall that the set X in Theorem 1
is open in X Q x --- x § and the class C is dense in Q). Hence if we add
an appropriate element from C to this sequence we get a dense subgroup of G
(see the proof of Theorem 1) and therefore we have the right-hand inequality in
(x ). Let {g1,...,gx) = G(K) for some g1,...,gi € C. Further, let gi € G(K)
be a fixed preimage of g; with respect to ¢ and let  be the conjugacy class of
g1 in G‘(f) Let g2,....4k € Q be a sequence of fixed preimages of g, ..., g
with respect to ¢. Obviously, (g1, .. .,4dx) = G(K). Thus, the set Q¥ is dense in
G(K) by Corollary 1 and therefore Q¥ is dense in G(K). Let BB is the big
Bruhat cell of G, where B is a Borel subgroup of G and g is a fixed preimage
of the longest element from the Weyl group. We may assume wy € G. Since
the big Bruhat cell is an open subset of G and C* is dense in _Q?, we can find
an element g € (BwoB) N C*. The uniqueness of the Bruhat decomposition
shows that g € BuoDB where B is a Borel subgroup of G. The eighth power of
every conjugacy class which has a non-trivial intersection with the big Bruhat cell
covers the whole Chevalley group if the ground field is infinite — this is proved
in greater generality in ([GS, Proposition 4]). Hence C% = G and we get the
left-hand inequality of (x * ).
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